力 bzoj-3527 Zjoi-2014
题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\limits_{i>j}\frac{q_iq_j}{(i-j)^2}$。求所有的$E_i=\frac{F_i}{q_i}$。
注释:$1\le n\le 10^5$,$0\le q\le 10^9$。
想法:我们可以把$F_i$中每一项上的$q_i$删掉因为我们求得$E_i$除掉了。
进而我们考虑如何求解$F$。
先看$j<i$的部分
$F_i=\sum\limits_{j=0}^{i-1} \frac{q_j}{(i-j)^2}$。
设$p(x)=\frac{1}{x^2}$。
所以$F_i=\sum\limits_{j=0}^{i-1} q_j\cdot p_{i-j}$。
紧接着我们强制令$p_0=0$,$F_i=\sum\limits_{j=0}^i q_j\cdot p_{i-j}$,可以用$FFT$加速。
接下来看$i<j$的部分。
此时$F_i=\sum\limits_{j=i+1}^{n-1} q_j\cdot p_{j-i}$。
像一样,这时我们将$p$序列翻转,仍然可以用$FFT$加速。
之后把这两部分加一起即可。
Code:
#include#include #include #include #include #define N 100010 using namespace std; typedef double db;const db pi=acos(-1);db E[N<<2],q[N<<2],p[N<<2];struct cp{ db x,y; cp() {x=y=0;} cp(db x_,db y_) {x=x_,y=y_;} cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);} cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);} cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}}a[N<<2],b[N<<2],c[N<<2],d[N<<2];void fft(cp *a,int len,int flg){ int i,j,k,t; cp tmp,w,wn; for(i=k=0;i k) swap(a[i],a[k]); for(j=len>>1;(k^=j) >=1); } for(k=2;k<=len;k<<=1) { wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k)); t=k>>1; for(i=0;i > n ; for(int i=0;i
小结:对于这两种形式可以用$FFT$加速应该熟练掌握。